Search results for "Genetic programming"
showing 10 items of 32 documents
Applications of Evolutionary Computation
2011
EvoCOMPLEX Contributions.- Coevolutionary Dynamics of Interacting Species.- Evolving Individual Behavior in a Multi-agent Traffic Simulator.- On Modeling and Evolutionary Optimization of Nonlinearly Coupled Pedestrian Interactions.- Revising the Trade-off between the Number of Agents and Agent Intelligence.- Sexual Recombination in Self-Organizing Interaction Networks.- Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review.- EvoGAMES Contributions.- Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game.- Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection.- An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Met…
Exploring the use of multi-gene genetic programming in regional models for the simulation of monthly river runoff series
2023
The use of new data-driven approaches based on the so-called expert systems to simulate runoff generation processes is a promising frontier that may allow for overcoming some modeling difficulties related to more complex traditional approaches. The present study highlights the potential of expert systems in creating regional hydrological models, for which they can benefit from the availability of large database. Different soft computing models for the reconstruction of the monthly natural runoff in river basins are explored, focusing on a new class of heuristic models, which is the Multi-Gene Genetic Programming (MGGP). The region under study is Sicily (Italy), where a regression based rain…
Structural difficulty in grammatical evolution versus genetic programming
2013
Genetic programming (GP) has problems with structural difficulty as it is unable to search effectively for solutions requiring very full or very narrow trees. As a result of structural difficulty, GP has a bias towards narrow trees which means it searches effectively for solutions requiring narrow trees. This paper focuses on the structural difficulty of grammatical evolution (GE). In contrast to GP, GE works on variable-length binary strings and uses a grammar in Backus-Naur Form (BNF) to map linear genotypes to phenotype trees. The paper studies whether and how GE is affected by structural difficulty. For the analysis, we perform random walks through the search space and compare the struc…
On the Locality of Standard Search Operators in Grammatical Evolution
2014
Offspring should be similar to their parents and inherit their relevant properties. This general design principle of search operators in evolutionary algorithms is either known as locality or geometry of search operators, respectively. It takes a geometric perspective on search operators and suggests that the distance between an offspring and its parents should be less than or equal to the distance between both parents. This paper examines the locality of standard search operators used in grammatical evolution (GE) and genetic programming (GP) for binary tree problems. Both standard GE and GP search operators suffer from low locality since a substantial number of search steps result in an o…
An Analysis of the Influence of Noneffective Instructions in Linear Genetic Programming
2020
Abstract Linear Genetic Programming (LGP) represents programs as sequences of instructions and has a Directed Acyclic Graph (DAG) dataflow. The results of instructions are stored in registers that can be used as arguments by other instructions. Instructions that are disconnected from the main part of the program are called noneffective instructions, or structural introns. They also appear in other DAG-based GP approaches like Cartesian Genetic Programming (CGP). This article studies four hypotheses on the role of structural introns: noneffective instructions (1) serve as evolutionary memory, where evolved information is stored and later used in search, (2) preserve population diversity, (3)…
CovSel
2018
Ensemble methods combine the predictions of a set of models to reach a better prediction quality compared to a single model's prediction. The ensemble process consists of three steps: 1) the generation phase where the models are created, 2) the selection phase where a set of possible ensembles is composed and one is selected by a selection method, 3) the fusion phase where the individual models' predictions of the selected ensemble are combined to an ensemble's estimate. This paper proposes CovSel, a selection approach for regression problems that ranks ensembles based on the coverage of adequately estimated training points and selects the ensemble with the highest coverage to be used in th…
Improving estimation of distribution genetic programming with novelty initialization
2021
Estimation of distribution genetic programming (EDA-GP) replaces the standard variation operations of genetic programming (GP) by learning and sampling from a probabilistic model. Unfortunately, many EDA-GP approaches suffer from a rapidly decreasing population diversity which often leads to premature convergence. However, novelty search, an approach that searches for novel solutions to cover sparse areas of the search space, can be used for generating diverse initial populations. In this work, we propose novelty initialization and test this new method on a generalization of the royal tree problem and compare its performance to ramped half-and-half (RHH) using a recent EDA-GP approach. We f…
Nature That Breeds Solutions
2012
Nature has always been a source of inspiration. Over the last few decades, it has stimulated many successful techniques, algorithms and computational applications for dealing with large, complex and dynamic real world problems. In this article, the authors discuss why nature-inspired solutions have become increasingly important and favourable for tackling the conventionally-hard problems. They also present the concepts and background of some selected examples from the domain of natural computing, and describe their key applications in business, science and engineering. Finally, the future trends are highlighted to provide a vision for the potential growth of this field.
Research of a Cellular Automaton Simulating Logic Gates by Evolutionary Algorithms
2003
This paper presents a method of using genetic programming to seek new cellular automata that perform computational tasks. Two genetic algorithms are used : the first one discovers a rule supporting gliders and the second one modifies this rule in such a way that some components appear allowing it to simulate logic gates. The results show that the genetic programming is a promising tool for the search of cellular automata with specific behaviors, and thus can prove to be decisive for discovering new automata supporting universal computation.
On the Parameterization of Cartesian Genetic Programming
2020
In this work, we present a detailed analysis of Cartesian Genetic Programming (CGP) parametrization of the selection scheme ($\mu+\lambda$), and the levels back parameter l. We also investigate CGP’s mutation operator by decomposing it into a self-recombination, node function mutation, and inactive gene randomization operators. We perform experiments in the Boolean and symbolic regression domains with which we contribute to the knowledge about efficient parametrization of two essential parameters of CGP and the mutation operator.